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Introduction: 

A number of cosmological observations, including those from Type Ia Supernova, Cosmic Microwave Background Radiation (CMBR) 

anisotropies [1] , Baryon Acoustic Oscillation [2], X-ray experiments, and Large Scale Structures (LSS) [3], have clearly shown that our 

Universe is going through an accelerated phase of expansion [4,5] . Dark energy, an unidentified exotic matter with high negative 

pressure, is introduced into mainstream cosmology to account for this observed reality. Nonetheless, the nature of dark energy remains a 

mystery, making it one of the main problems facing cosmology today. With an equation of state  (where  and  

are the thermodynamic pressure and energy density of the dark energy, respectively), the cosmological constant  represents a vacuum 

energy density and is the most basic description of dark energy. In order to fairly explain the empirical evidence (the accelerated 

expansion of the universe today), the earliest and most basic theoretical contender  was proposed. There are two major issues 

with , which are the cosmic coincidence problems and the fine tuning issues. The theoretical value of  is several orders of magnitude 

larger than the current observational value in the former problem (roughly 10123  higher than what we observe [6]). In the latter problem, 

the mystery of the current densities of dark energy (DE) and dark matter (DM) of the same order, albeit evolving in different ways, is 

addressed. Several dynamic dark energy models with distinct equations of state during the universe’s expansion have been proposed to 

address these issues [7,8] . Holographic Dark Energy (HDE) models have received a lot of interest among these [9]. The holographic 

principle of quantum gravity, which asserts that a system’s entropy scales with its surface area  rather than its volume, is the 

foundation upon which HDE models are built. According to this principle, the zero point energy of the system with size L can be 

bounded by the mass of a black hole with the same size [10]  as follows 
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                                                                   (1) 

where  is t he quantum vacuum energy density and  is the plank mass. 

An analogy between the infra-red (IR) cut-off encoded in the scale L and the ultraviolet (UV) cut-off, defined by , is described by this 

inequality. In cosmology, the dark energy density of the universe, , can be thought of as equal to the vacuum energy, or . 

Saturating the inequality yields the biggest IR-cutoff L from effective quantum field theory. As a result, the dark energy density (the 

vacuum energy density) can be written as  

                                                               (2)

 

where ‘ C ’ is a dimensionless numerical parameter which is estimated by observational data: for flat Universe (i.e. for k=0) it is obtained 

that  and in the case of non-flat Universe (i.e. for ) it is obtained that  (reference [11], 

[12] ). 

 

The Hubble radius [9,13], the Future event horizon [10,14], and Ricci’s scalar curvature [15,16] are the three most commonly utilized 

options for the IR-cutoff in the literature. Although it provides the right energy density, the Hubble radius  (  is the standard 

Hubble parameter) is unable to provide the correct equation of state for dark energy. This choice of IR-cutoff is proposed to explain both 

of the cosmological constant difficulties for the future event horizon . However, Granda and Oliveros [17]  introduced the Ricci 

scalar curvature, , which is based on the spacetime scalar curvature as IR-cutoff and has a similarity to the size of 

maximal perturbation that causes a black hole to form. This IR-cutoff is also reasonably excellent at fitting the observational data and 

may remove the fine tuning and coincidence issues. 

A system governed by gravity must have a different number of relevant degrees of freedom in proportion to the extent of the surface 

that surrounds it. This is the holographic principle [18]. Accordingly, cosmologists have hypothesized that the use of the holographic 

principle could provide some clues on the enigmatic and unknowable nature of DE. Holographic dark energy (HDE) models are any 

dynamical DE models that are based on this idea. From the point of view of quantum gravity the energy density of any given region 

should be bounded that ascribed to a Schwarzschild blackhole (within the volumn), i.e., 

 

                                                              (3) 

where  is the quantum vacuum energy density and  is the Planck mass . 

In contrast to the equivalent non-interacting scenarios, the cosmic coincidence problem can also be resolved by the holographic dark 

energy models that interact with dark matter (see sections 1 and 2) [19,20]. Furthermore, it has been previously investigated that for 

certain interaction models, the equation of state for the holographic dark energy may cross the phantom divide line if the future event 

horizon is set to the infra-red ( )-cutoff [21]. This situation likewise holds true when the universe is curved [22]. As far as we are aware 

from the literature, non-interacting holographic dark energy models are incapable of crossing the phantom split line. We consult Ref. 

[23] for a comparison of interacting and non-interacting holographic dark energy models. As we discussed in section 2, there are a 

variety of options for the IR-cutoff, but three are frequently employed in the literature: the Hubble radius, the future event horizon, and 

the Ricci length scale. The scenarios that correlate to various IR-cut-off lengths will be briefly explained. 

The Holographic Dark Energy model (HDE) with an event horizon of IR-cutoff is the first thing we look at in this chapter. The modified 

holographic dark energy model at Ricci’s Scale (MHRDE) is next examined. This chapter is structured as follows: first, we go over the 

model’s fundamental equations and interaction terms. Next, we analyze the dynamical system of the interacting HDE model by 

applying the field equations to autonomous systems. Finally, we look at the interacting MHRDE model. In order to study non-

hyperbolic equilibrium points and determine potential bifurcation values, we develop Lyapunov functions in this section. The 

discussion of the dynamical system analysis’s cosmic implications concludes. 

 

1. Primary Equations and construction of an autonomous system 
 

In large scale universe can be treated as homogeneous and isotropic flat FRW. Few models have been proposed to correctly describe that 

universe is filled up with dark matter  in the form of dust and HDE in perfect fluid which satisfies the state equation 

 where  is the thermodynamic pressure and  is the energy density. There is no gravitational forces between DM 

and DE. 

The Einstein field equations are 

                                   (4) 
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where  is the reduced Plank mass,  

                    (5) 

Applying equations (4) and (5), we get acceleration of universe 

                         (6)
 

Now for cosmic acceleration we need . Introducing new parameters in the equation (5) we have 

                (7) 

where ,  and , the energy densities ratio. Now introducing interaction term 

between dark energy and dark matter, the energy conservation equations turns into the form 

                (8) 

and 

                          (9) 

The interaction term  have different form. In this article we assume  i.e dark energy converted to dark matter.  mainly 

confirm three postulate namely it satisfies (i) Le Chateliers principle, (ii) validity of the second law of thermodynamics, (iii) and in favour 

of resolving the coincidence problem. 

We only discuss about dark energy and dark matter, so we shall not consider baryonic matter in the interaction term. In this paper 

consider five different interaction term separately such as 

 

2. HOLOGRAPHIC DARK ENERGY MODEL WITH EVENT HORIZON AS IR-CUTOFF 

We choose the IR-cutoff as event horizon of the universe i.e radius  is defined by the improper integral: 

             (10)
 

It is clear that the above integral converges only when the strong energy condition is violated. Therefore in the present acclerating phase 

the improper integral always exists. Now assuming  we have 

                          (11)

 

Now using the equations (10) and (11) and also expression for dark energy density  from (8), for any interaction term , the EoS 

takes the following form 

       (12)

 

The second Friedman equation (4) and the dark energy conservation equation turn into an autonomous system (which is correspond to 

the phase plane )  as 

           (13)

 

Now this autonomous system has a line of equilibrium points for  in the phase plane  . 



 

12 

 

 

We now analyze the phase space of the system with different choices of interaction terms separately. Let us first choose 

, the above autonomous systems reduces to 

  (14)

 

We choose , the equations (14) takes the following form 

 

The only physically meaningful equilibrium point corresponding to the above autonomous system is , whenever 

and   is a non zero real number.  The Jacobian matrix at  corresponding to the above autonomous system can be 

written as 

 

and the eigenvalues are  for all . We can clearly see that 

the nature of the equilibrium point  explicitly depends on the value of . The equilibrium point  is hyperbolic for  and 

nonhyperbolic for  (because  for  and  for all ). From the eigenvalues, we can conclude that 

for , the eigenvalues are complex conjugate to each other with negative real part while 

 and the real part is positive while . Further, for 

, the eigenvalues are complex conjugate to each other with negative real part while 

 and the real part is positive while . The real 

parts of  and  are zero when . We can also see that for ,  and  while ; 

and  and  while . Hence, using Hartman-Grobman theorem, we can conclude that the equilibrium point  is a 

stable focus (spiral sink) if  and  or  and 

; the equilibrium point  is an unstable focus (spiral source) if  and  or 

 and ; the equilibrium point  is a center if ; and for 

 the equilibrium point  is a saddle point and unstable in nature (see figure 1). 
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 Figure 1. Profile of the global analysis in finite phase space for several values of   and  corresponding to the 

equilibrium point . The horizontal axis represents variable ‘H’ and the vertical axis represents variable ‘v’. (a) 

corresponds to  and  and this phase portrait shows that the origin is a stable focus, (b) corresponds to 

 and : this phase portrait indicates that the origin is an unstable focus, (c) corresponds to  and 

: this phase portrait shows that the type of stability of the origin is center, (d) corresponds to  and 

: the type of stability of the origin in this case is also center (but the direction of vector field in anticlockwise 

direction), (e) corresponds to  and : the origin exhibits its unstable focus behavior in this case, (f) 

corresponds to  and : this phase portrait shows that the type of stability of the origin is a stable focus, (g) 

corresponds to  and : this phase portrait shows that the origin is a saddle node, (h) corresponds to 

 and : the type of stability of the origin in this case also saddle node and unstable in nature. 

Now the conservation equations can be expressed in the form 

       (15)
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The above system is  where  is the open set on  defined by . The set of 

equations in (14) will represent an autonomous systems provided for the dark energy is constant. The equilibrium points for the 

autonomous systems  and , we get either ,  or  provided  which assists 

cosmic acceleration. All the equilibrium points are non-hyperbolic equilibrium points, we now construct suitable Liapunov function so 

that we can analyze the stability of the system for all equilibrium points. Let us construct , this 

function over  continuously differentiable. For the equilibrium points  we have  and 

 for all other points. 

   

Now from the above equation, we can notice that  for all point in  except equilibrium points. From Lyapunov 

stability analysis it is clear that the non-hyperbolic equilibrium points are asymptotically stable. 

Next we consider the interaction term , we analyze the evolution equations for the given interaction term. For 

the interaction term , the autonomous system take the form as 

(16)

 

Choosing  and , the equations of (16) converted to 

                                                       (17)

 

This system is continuously differentiable on  for . The only equilibrium point of this system is 

 for all . The Jacobian matrix corresponding to equations (17)  is 

 

The eigenvalues of the Jacobian matrix at the point  are 

 

For the hyperbolic case, using the Hartman-Grobman theorem, the stability features of the equilibrium point  in the regions of the 

parameter space  are shown in the figure 2. We can also note that the eigenvalues are purely imaginary if , that is, the 

type of stability of the equilibrium point is center if . 
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 Figure 2. This figure shows the regions of the parameter space  corresponding to the stability features for the 

equilibrium point . The horizontal axis represents parameter ‘b’ and the vertical axis represents parameter ‘c’. 

We further investigate and analyse the system for non hyperbolic instance, for this we write the Conservation equations in this format 

   (18)

 

The above system is  where  is the open set on  defined by . The set of 

equations in (18) will represent an autonomous systems provided for the dark energy is constant. The fixed points for the autonomous 

system  and , we get either ,  or , provided  which assists 

cosmic acceleration. All the fixed points are non-hyperbolic equilibrium points, we now construct suitable Lyapunov function so that we 

can analyze the stability of the system for all equilibrium points. Let us consider , this function 

continuously differentiable over . For all equilibrium point  we have  and  for all 

other points. 

. 

Now from the above equation  for all points of  except equilibrium points. From this it is clear that all the 

equilibrium points are asymptotically stable. 

Next we choose the interacting term  as , the second Friedman equation and the energy conservation equation for 

Dark Energy takes the form as, 

                                                             (19)

 

Equations (19) forms an autonomous system. We try to analyze the phase plane . The perturbation matrix of the above system 

is 
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The only physically meaningful equilibrium point corresponding to the above system is , provided  

for all . The eigenvalues of the Jacobian matrix at the point  are 

 

From the eigenvalues, we can say that  is hyperbolic if  and nonhyperbolic if . Now we can observe that 

while  the eigenvalues  if ;  for ; and  if 

 Further, notice that while  the eigenvalues  if ;  

for ; and  if  Thus by using Hartman-Grobman theorem, we can conclude that while 

 the equilibrium point  is an unstable node if , a stable node for , and a saddle point if 

. Also note that while  the equilibrium point  is a stable node if , an 

unstable node for , and a saddle point if . 

Next we consider . In the spatially homogeneous and isotropic universe, the continuity equation and conservation 

equation for DE assume the form as, 

   (20)

 

The above two equations forms an autonomous system. We study the stability behaviour of the system. The only physically meaningful 

equilibrium point corresponding to the above system is  provided . The Jacobian matrix of the system 

$(\ref{eq31}-\ref{eq32})$ is 

                                          

 

The eigenvalues of the Jacobian matrix at the point  are 

                                                                        
 

We can see that for  the eigenvalues are  but then the coordinate of the equilibrium point becomes  but at this point a 

singularity occurs (as  presents in the denominator part of first equation of (20)). So the equilibrium point  is a hyperbolic point for 

all  and . Using Hartman-Grobman theorem, we conclude that the equilibrium point  is an unstable focus if , 

for  the equilibrium point  behaves as an unstable node, and the type of stability of the equilibrium point  is a saddle node if 

. 
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At last we consider the interaction term . For the given term, the equations (20)  takes the following form 

     (21)

 

The above system is an autonomous system. We observe the system using different dynamical tools. This autonomous system extracts 

two line of equilibrium points  when  and  when . Jacobian matrix 

corresponding to the above system is 

 

Now let’s determine the stability of  for . In this case, the eigenvalues of the Jacobian matrix at the point  are  and 

 It follows that the equilibrium point  is always nonhyperbolic. Plotting the system numerically in a suitable graphing 

utility, we can observe that the line of equilibrium point  is stable when  or  and  is 

unstable when  or  . 

Now for , the eigenvalues of the Jacobian matrix at the point  are 

 

We can observe that while  the eigenvalue  for all  and  when  and  when . 

Further, we can see that while  the eigenvalue  for all  and  when  and  when 

. Thus by using Hartman-Grobman theorem, we can conclude that for , the equilibrium point  is a saddle node 

if  and a stable node  while ; and the equilibrium point  is an unstable node if  and a 

saddle node  while . 

Now let’s discuss the stability criteria of the equilibrium point . The eigenvalues of the Jacobian matrix at the point  are 

 

For the hyperbolic case, using the Hartman-Grobman theorem, the stability features of the equilibrium point  in the regions of the 

parameter space  are shown in the figure 3. 
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Figure 3. This figure shows the regions of the parameter space  corresponding to the stability features for the 

equilibrium point . The horizontal axis represents parameter ‘He ‘and the vertical axis represents parameter ‘c’. 

 

3. MODIFIED HOLOGRAPHIC RICCI DARK ENERGY MODEL 

Here we introduce infrared cutoff L with modified holographic Ricci dark energy in terms of  and  as 

                                                                       (22)
 

here  and  are free constants. We have chosen ,  are reference by the author[ ] calculating the parameters inmost of the cases. Also 

the equation of the state parameter for DE takes the form 

                         (23)
 

We estimate deceleration parameter using field equations is given by 

                     (24)
 

We shall now analyze the dynamical system for two different choices of the interactions. 

 
The evolution equation for  can be written as 

                (25)

 

The second Friedman equation can also be written as 

                   (26)
 

The equations (25) and (26) together form an autonomous system in the  plane. The only physically relevant non-isolated 

equilibrium point of this system is  for all . The eigenvalues of the Jacobian matrix corresponding to this 

autonomous system at this equilibrium point are  and . From the obtained eigenvalues, we can conclude that the 

equilibrium point  is nonhyperbolic. Plotting the system numerically in a suitable graphing utility, we can observe that the 
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equilibrium point is stable when  or  and the equilibrium point is unstable when 

 or 
 .

 

 

 
The evolution equation for  and second Friedman equation can be written as 

 

                               (27)

 

Equations (27) together forms an autonomous system. The non-isolated equilibrium points of this system are  for all 

, provided  and , provided . The eigenvalues of the Jacobian matrix corresponding to this 

autonomous system at  are  and . So the nature of the equilibrium point  is non-hyperbolic. Plotting the system 

numerically in a suitable graphing utility, we can observe that the equilibrium point is stable when  or 

 and the equilibrium point is unstable when  or . Further, the eigenvalues of the 

Jacobian matrix corresponding to the autonomous system (27) at  are  and . So the nature of the equilibrium point  

is non-hyperbolic. Plotting the system numerically in a suitable graphing utility, we can observe that the equilibrium point is stable 

when  or  and the equilibrium point is unstable when  or . 

 

4. COSMOLOGICAL IMPLICATIONS OF THE equilibrium pointS 
Case I: The nature of the equilibrium point depends on the parameter . The equilibrium point will may be hyperbolic or not for 

. For this range of values of , , i.e., the dark energy is purely of phantom nature. For , there is 

scaling cosmological solution corresponding to the equilibrium point while  corresponds to purely dark energy model. For 

,  is negative, indicating that  is negative and hence there is flow of energy in the opposite direction. Also for  

the dark energy fluid will not be phantom in nature. However, for  the equilibrium point corresponds to an accelerating 

phase of expansion while for , the universe may have a decelerated era of expansion depending on some restriction on . 

Case II: The equilibrium point corresponding to this interaction describes scaling solution for non-zero . For ,  the 

equilibrium point describes the cosmological evolution only with cosmological constant. The dark fluid is of phantom nature 

corresponding to scaling solution and there is always accelerated expansion for . Further,  is not much interesting from 

the observational point of view as it represents the transition epoch . 

Case III: The cosmological analysis is similar to the previous interaction. Here, , i.e.,  can not be chosen as , i.e., the 

two fluids become non-interacting. Though the equilibrium point is mostly dark energy dominated with the equation of state of dark 

energy,  but for  (i.e., ) ,   i.e., there is decelerated expansion of the universe. 

Case IV: The interacting model is not much interest as  is always zero. Still, it is interesting to note that though the equilibrium point 

represents a scaling solution with dark energy equation of state either in the phantom domain or very close to it in the quintessence 

domain but still there is no longer accelerated expansion. Probably, the interaction has a great influence on the evolution suppressing the 

role of dark energy. 

Case V: Here among the two equilibrium points  is more interesting than  as  for  throughout the evolution. For the 

equilibrium point  with , there is always decelerated expansion of the universe provided  while accelerated 

expansion is possible for . However,  is mostly dark energy dominated and there is accelerated expansion. 

Case VI: For this interaction HDE model, the equilibrium point with  corresponds to CDM model and  at all instant. 

Hence it does not indicate any cosmic evolution. The equilibrium point for  is interesting. The dark energy represents exotic fluid 

if  and  or  and , in other cases  corresponds to normal fluid. However, the cosmic evolution will 
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be in accelerated mode or in decelerated mode, depending on  or . Note that  and  describe the two 

transition epochs namely  and  respectively. 

 

5. Brief Summary 
The present work is an example to show how a cosmological model can be analyzed through dynamical system analysis without solving 

the coupled nonlinear Einstein Field equations. In the interacting two-fluid system, a dust fluid is chosen as the cold dark matter and for 

the dark energy; (i) holographic dark energy with IR cut off as event horizon is chosen (ii) modified holographic Ricci dark energy model 

is considered in two different sections. For the interaction it is assumed that energy is transformed from DE to DM and five possible 

choices for the interaction terms are considered. For hyperbolic equilibrium points Hartman-Grobman theorem has been used to study 

the stability of the equilibrium points while for the nonhyperbolic equilibrium points, suitable Lyapunov function has been constructed 

and stability analysis has been done. The profile of the global analysis in finite phase-space has been presented graphically. Finally, the 

regions of the parameter space corresponding to the stability features for the equilibrium points has been shown graphically. 
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